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LATTICE RULES BY COMPONENT SCALING 

J. N. LYNESS AND T. SOREVIK 

ABSTRACT. We introduce a theory of rectangular scaling of integer lattices. This 
may be used to construct families of lattices. We determine the relation between 
the Zaremba index p(A) of various members of the same family. It appears 
that if one member of a family has a high index, some of the other family 
members of higher order may have extraordinarily high indices. 

We have applied a technique based on this theory to lists of good lattices 
available to us. This has enabled us to construct lists of excellent previously 
unknown lattices of high order in three and four dimensions and of moderate 
order in five dimensions. 

1. BACKGROUND 

The purpose of this paper is to find s-dimensional integer lattices A that 
have relatively high Zaremba indices or figures of merit. This index may be 
defined in terms of absolute values of the nonzero components of a lattice point 
X = (XI1, X2, *--. Xs) 

Definition 1. The product coordinate distance function of x is 

(1. 1) P(X) = X1 2 -s 

where 

(1.2) xi = max(lxil, 1). 

In terms of this, we have the following definition. 

Definition 2. The Zaremba index or figure of merit, p(A), of an s-dimensional 
integer lattice is 

(1.3) p(A)= min p(x). xEA; x#O 

Note that all lattice points of an integer lattice have integer components. Thus 
p(x) and p(A) are positive integers. In ?3 we shall generalize this definition to 
other point sets. 
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The Zaremba index, p(A), is a recognized measure of efficiency of the mul- 
tidimensional quadrature rule based on AQ, the lattice reciprocal to A. This 
lattice rule employs all N points of AQ lying in [0, 1)S, N being the order 
of A. Thus, attention has been devoted to searching in Ys(N), the set of s- 
dimensional integer lattices of order N, with a view to finding optimal lattices 
of this order, that is, lattices A' for which p(A') coincides with 

(1.4) ps(N) = max p(A). 
A E Y(N) 

It is convenient to introduce a "measure of goodness" of a lattice by means 
of which one can compare lattices having different values of N. Our measure 
is based on the Zaremba [9] conjecture that suggests that there exists a constant 
zs such that 

(1.5) ps(N) > Zs(lN)s2 s > 2. 

Following Kedem and Zaremba [2], we assign to every lattice a value defined 
by 

p(A) (log N)s-2 
(1.6) z(A) = N 
This is of course nothing more than a scaled version of p(A). However, this 
value is useful when examining a list that contains lattices of different orders 
N to recognize quickly those lattices which have an outstanding value of p. 

This paper is not directly concerned with the conjectures on which such es- 
timates are based. We note, however, that there exists a bound on ps(N) of 
order O(N/(log N)s-1) [10] and that both the conjecture and bound are in the 
context of number-theoretic rules; that is, they are restricted to lattice rules of 
rank 1. 

For an account of the general theory, of which this conjecture forms part, we 
refer the reader to recent papers by Niederreiter [6, 7], who has extended the 
theory to cover lattice rules of general rank. This developing theory is mainly 
devoted to existence proofs and asymptotic bounds. The present paper, on the 
other hand, is devoted to providing concrete examples of lattices whose recip- 
rocal may be used to construct cost-effective lattice rules. These examples seem 
to confirm the theory and are in compliance with the truth of the conjecture. 

In our searches [3] and [4], each integer lattice A is represented by an s x s 
generator matrix B. All elements of A are integer weighted sums of the rows of 
B, and A is of order N = I det BI . The lattice AQ on which the corresponding 
lattice rule is based has a generator matrix A = (B-')T. 

2. COMPONENT SCALED LATTICES 

Theorem 3. Given s nonzero and real numbers k1, k2, .. ., k5 and a lattice A, 
there exists a lattice A' such that 

(2.1) P = (PI , P2 *.. a aPs) E A X* p' (kipl, k2P2, *aksPs) E A' . 

The proof is almost trivial, whatever definition of a lattice is invoked. 

Definition 4. The lattice A' in the theorem is termed a rectangularly scaled ver- 
sion of A, obtained by using an s-dimensional scaling factor (k1, k2, . .. , k5) 



LATTICE RULES BY COMPONENT SCALING 801 

or a scaling matrix K = diag(ki, /2, .k . , ks). NK = I det(K)I = I rjs=1 kiI iS 
called the order of this scaling. 

A special case of rectangular scaling occurs when all components of the scaling 
factor are equal. In this case the scaling matrix mI is a multiple of the unit 
matrix I; the subsequent theory can then be applied in the context of the ms- 
copy rules discussed in [8]. 

Rectangular scaling of a lattice has several trivial and obvious properties. In 
particular, a set of successive scaling operations is itself a scaling operation, 
and the scaling operation is commutative. If B is a generator matrix for A, 
then BK is one for A'. When A and A' are scaled versions of one another, 
so are their reciprocal lattices, A' and A"; the scaling matrices involved are 
inverses of one another. 

It appears that, when one confines oneself to the set of integer lattices, one 
may construct distinct families of lattices, in which each member is a rectangu- 
larly scaled version of every other member. Each family is specified by a unique 
family root lattice A. 

Definition 5. A family root lattice is one whose generator matrix, B, has col- 
umns each of whose greatest common divisor is 1 . 

Other members of the family are precisely those whose generator matrices 
are B' = B diag(k1, /2, ... , ks) with ki integer. To determine to which family 
some integer lattice A' belongs, one takes its generator matrix B' and calculates 
the greatest common divisors, hI, h2, ... , hs of its columns. Then the matrix 
B = B' diag(h 1, h-1, .. , h- 1) is a generator matrix of the family root lattice 
that generates the family to which A' belongs. 

We are interested in the relation between p(A) and p(A'). 
We consider first the scaling of only one coordinate using a scaling factor 

(ky, 1,..., 1) with k, > 1. As mentioned before, corresponding to every 
point x = (x, x2, .., x) of A is a point x' = (xl, x2 Applying 
Definition 1, we find 

(X) ={k, p(x) when xl, 0, 
p(x) when x= 0. 

It follows from this and Definition 2 that 

(2.2) p(A) < p(A') < kip(A). 
The possibility of successive scaling in each coordinate in turn, and the commu- 
tative property of the scaling operation, allows us to state the following theorem. 

Theorem 6. Let A' be a rectangularly scaled version of A obtained by using a 
scaling factor k = (k1, k2, ... , ks) with each ki > 1. Then 

(2.3) N'=kjk2*..ksN 
and 

(2.4) p(A) < p(A') < kl k2 ... ks p(A) . 

We note that, under the hypotheses of this theorem, p(A')/N' cannot exceed 
p(A)/N. However, since 

= p(A) (log N)s-2 
(2.5) z(A)= N 
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we see that if, in fact, p(A')/N' = p(A)/N, then the z-value of A' is greater 
than the z-value of A; in this case, if A is a "good" lattice, then A' is better. 
Because of this, the present authors decided to carry out scaling of lattices 
already known to be good lattices, to see whether we could discover some better 
lattices or "good" lattices of higher order. 

In its simplest terms, the idea developed in this paper is to take a set of 
lattices that are known to be good, scale them in various ways, and inspect the 
scaled lattices (which are generally of higher order) to see whether any of them 
are good. In some cases, if we are lucky, we may find that the value of z(A') 
is close to or even exceeds the upper limit of those already known. In this 
very fortunate case the new lattice is relatively as good or even better than the 
original lattice and has a higher order. 

The underlying philosophy of this approach is that a calculation of this sort, 
while nontrivial, is orders of magnitude shorter than, for example, a direct 
search to find ps(N'). If in a minor proportion of the calculations, say one in a 
thousand, we find a good lattice, the whole calculation can be termed a success. 

The organization of this search requires some care. One can find lattices 
with -arbitrarily high indices p(A) by making N sufficiently large. To see this, 
simply consider the scaled versions of the unit lattice A0 . The lattice A' = kAo 
(which can be obtained from A0 using k = (k, k, ..., k)) has p(A) = k and 
N(A) = ks. 

In providing guidelines for the scope of the search, the following theorem is 
helpful. 

Theorem 7. Under the hypothesis of the previous theorem, 

(2.6) p(A') < N(NI/N)l/s. 
Proof. All integer lattices of order N contain the sublattice NAo (where A0 
is the unit lattice). Thus, A' contains each of the points (k, N, 0, 0, ... , 0), 
(0, k2N, 0, ... , 0), ..., (0, 0, ... , ksN), and it follows that 

(2.7) p(A') < Nki, i = 1, 2, . ..., s. 

Since all ki are positive integers, we may take the geometric mean of the s 
equations in (2.7) and, using (2.3), obtain (2.6). fl 

In order to make the search finite, we choose a lower bound T specified in 
(5.1) below and limit the search to lattices A' for which z(A') > T. From the 
theorem we see that 

(2.8) z(A') < (N/N')lI-/slogs-2 No 

and so it is bounded by a quantity that approaches zero with large N'. Thus, 
since N' is restricted to integer multiples of N, the number of family members 
to be treated is finite. In fact, elementary manipulation yields the following 
lemma. 

Lemma 8. We have z(A') < T when 

(2.9) N/ logS" N' > N/-z 

and 

(2.10) zlogN' > 1. 
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This is a direct consequence of (2.8) and is readily established by eliminating 
N between inequalities (2.8) and (2.9). In practice, (2.10) is satisfied trivially, 
and so we may restrict our search to values of N' violating (2.9). 

3. SCALING AN INDIVIDUAL LATTICE 

In ??4-6 we shall describe and analyze results obtained by scaling lists of 
lattices, all of which are reasonably good lattices. In this section we present 
a more detailed theory about rectangular scaling. The thrust of this section 
is to provide information by means of which p(A') for a family of lattices 
may be readily calculated. Readers interested principally in the results of our 
numerical experiments may omit this section in a first reading. Without loss in 
generality we shall assume as before that the lattice A is a family root lattice 
(see Definition 5) and that A' is a scaled version obtained using a scaling factor 
k, all of whose components are positive integers. 

The behavior of p(A') as a function of k is given by the function in (3.1) 
below. 

Theorem 9. Under the hypotheses of the preceding theorems, there exist 2s - 1 
positive integers A, Al, ... , A23. s, which depend only on A, such that 

(3.1) p(A') Imin A ?Al ?? ?A12 Al13 A23) N1 N ( ki ' k2 ' k3 ' @@'kjk2 ' k k3 ' 'CAk 

Note that these denominators comprise all distinct products of up to s - 1 
distinct components of k. There is no term in (k1k2... ks)-1 . 

Note also that (3.1), while implicitly containing many inequalities, actually 
defines a function of k. The rest of this section is devoted to establishing 
Theorem 9 and to showing how to calculate a set of constants Aij,,... from a 
generator matrix B of A. It will appear that each coefficient Aij, ... can be 
conveniently defined in terms of functions of the form p(S), where S is a 
specified set of points belonging to A0 and 

(3.2) p(S) mmn P(x), 
xES; X#O 

where p(x) as defined in ? 1 is the absolute value of the product of the nonzero 
components of x. This notation is a natural generalization of that introduced 
in Definition 2. 

We now partition the elements of A into 2s distinct sets. We distinguish 
these using an s-component binary index u = (ul, u2, ..., us), that is, one in 
which each component is either 1 or 0. 

Definition 10. Let A be an s-dimensional integer lattice and t an s-component 
binary index. Then 

(3.3) F(t) = {xlx E A and xi = 0 when ti = 0 and xi : 0 when ti : 0} . 

Note that F(t) is not a lattice and (0 0. 0) is the single point (0, 0, . .. , 0) . 
These 2S distinct sets form a partition of A; that is, 

(3.4) A= U p(u) 
u1=O, 1 
1<i<s 

This partition has been constructed with the following property in view. 



804 J. N. LYNESS AND T. S0REVIK 

Lemma 11. When (xi, X2, ... , x5) E F(u) 

(3.5) p(klxl, k2X2,..., kx) = k(u)p(xi , ..., x5), 

where 

(3.6) k(u) = kulk- 2 . .. kUs 

is the product of those components ki of k for which ui = 1. 

Theorem 12. Under the hypotheses of Theorem 6, 

(3.7) p(A') = min (k(u)p(F(u))), 
ui=o,1I 
l<i<s 

where these quantities are defined in (3.6), (3.2), and (3.3). 

Proof. The theorem follows because 

p(A') = min p(kIxI , k2X2, ksxs) 
xEA 
x#'O 

(3.8) = min min p(kixi , k2X2, ksXs). 
Ui=0, 1 XEJ7(u) 
l<i<s 

The first equality above follows from the definition of p and of the scaled 
lattice. The second follows from the partition (3.4) above. When we apply 
successively Lemma 11 and (3.2), we find that the expression on the right in 
(3.8) reduces to the right-hand side of (3.7). 0 

Theorem 9 may be obtained from this theorem by simply dividing by N' = 
kk2 ... ksN and recognizing that, when u : 0, the set I(u) is not empty and 
p(f(u)) is a positive integer. 

One readily identifies 

(3.9) Ai,1,... - p(f(u)) 

where u is the binary index that has zeros in positions corresponding to i, j, . . .. 
the subscripts of A, and units elsewhere. 

Since the point set p(u) contains the point (u IN, u2N, ... , usN), it follows 
that when u :$ 0, 

(3.10) 1 < p(J7u)) < Nu'+u2++us 

and (3.7) supports the 2s - 1 inequalities 

p (A') < (k N) u I(k2 N) U2 (ksN)us 
(3.11) u 0, u1=0, 1, i=1,2,...,s. 

There is a somewhat unexpected reformulation of Theorem 12. We recall that 
the points of p(u) of Definition 10 do not form a lattice. We may, however, 
form a lattice A(U) from the points of p(u) by adding all points of the form 
x?y, where x, y E p(u) , and iterating. This turns out to be a (uI +u2+ **+Us) 
dimensional projection of A, defined by the following 
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Definition 13. Let A be an s-dimensional lattice and t an s-component binary 
index. Then 

(3.12) A(t) = {XJX E A and xi = 0 when ti = }. 

It follows quite simply that partition (3.4) of A induces a similar partition 
of A(t), namely, 

(3.13) A(t)= U j'(U), 

O<ui<ti 
1<i<s 

from which it follows that 

(3.14) p(A(t)) = min p(f(U)) . 
0~ui~ti 
1<i<s 

iU40 

Lemma 14. For a given s-dimensional lattice A and s-dimensional binary index 
t , 

(3.15) min k(u)p(F(u)) = min k(t) p(A(t)), min k(u) pm(Vu)) 
f<i<s 1 <i<s 

uii0 U:'A 
U:'4 

where AMt and F(u) are defined in terms of A in Definitions 13 and 10, and p 
is defined in (3.2). 

The reader will recognize that the two sides of equation (3.15) differ only in 
that a single term has been changed. 
Proof. To establish the lemma, we take the right-hand side of (3.15) and replace 
the cofactor of k(t) by the expression given in (3.14). This procedure leaves us 
with an expression involving two somewhat similar sets of terms. By inspection 
we see that, except for the principal term in which u = t, there are a pair of 
terms corresponding to each u, one of which has a factor k(t) and the other 
k(u). In all cases k(u) < k(t), and the first term can be discarded. Doing 
this leaves the expression on the left-hand side of (3.15) and so establishes the 
lemma. rJ 
Theorem 15. There holds 

p(A') = mmn (k(u)p(S(u))), 
uj=O, 1 
l<i<s 
u#0 

where S standsfor F or A and may be chosen variously in each of 25 -1 terms. 
Proof. One may successively apply the lemma to the right-hand side of (3.7). 
Each application alters one F to S. The lemma must be applied in a proper 
order. Any ordering in which all terms having , ti = d are treated before any 
having E ti > d with d = 1, 2, ..., s is suitable. 1J 

Theorem 15 sets the stage for the calculation of p(A') in the situation in 
which A is defined by a generator matrix B in utlf (Hermite normal form) 
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and in which software is available to calculate p(A) for up to s-dimensional 
lattices from its B matrix. The problem is to identify a generator matrix of 
A(t). 

Let B be in utif andthe binary index vector t = (0, 0, . . . , 0, 1 , .I . , 1) 
be a string of s - a zeros followed by a string of a ones with, of course, 
a = 5 t1. In this case it is almost self-evident that a generator matrix of 
A(t) is obtained by replacing the first s - a rows of B by zeros. Thus, p(A(t)) 
may be obtained by applying the software to the a-dimensional lattice whose 
generator is the a x a lower right-hand minor of B. 

When t = (ti, t2, ... , tO) is not of that form, we exploit the circumstance 
that p is invariant under permutations of the coordinate system. Thus, let P 
be an s x s permutation matrix, set t' = Pt, B = BP, and let A be the lattice 

whose generator matrix is B. Then p(A(t)) = p(At )). Thus, one finds the 
permutation P which takes t into t' of form (0, 0, 0, 1, ..., 1), applies it 
to the columns of B to obtain B, and then puts B in utif . This problem is 
now reduced to the one described in the preceding paragraph. 

In our numerical calculations, in pilot schemes we calculated each p(A') 
individually using our own software. However, applying the results of the pre- 
vious two paragraphs led to a much faster code. For each root lattice A we 
calculated 2s - 1 constants required in (3.1). This involved calculating only 
one s-dimensional figure of merit A = p(A), the other constants Ai,1, ... being 
lower-dimensional figures of merit. Then we relied on (3.1) to calculate z(A') 
for all lattices A' in which we were interested. These included at most those 
with N' violating (2.9). 

4. THE HIGHLIGHT LISTS 

Applying the technique of ?3, we have found apparently endless lists of lat- 
tices, hundreds of which are excellent or interesting by previously acceptable 
standards. In order not to overwhelm the reader, we are presenting our results 
in two parts. In this section we present two "highlight" lists. These include 
three- and four-dimensional lattices with exceptionally high z-values and also 
lattices with moderate z-values but exceptionally high values of N. 

In ?5 we shall give in more detail some of the actual results and explain 
precisely how they were obtained; then in ?6 we shall comment on some aspects 
of these results. 

To provide criteria for our lists, we have defined an s-dimensional benchmark 
lattice as follows: 

Definition 16. The s-dimensional lattice As of order 2s+1 whose generator 
matrix in utif is 

i2 0 t t 0 2 
0 2 .. 0 2 

(4.1) B (Xs)= 
0 0 ... 2 2 
0o 0 .. 0 4, 

is termed the s-dimensional benchmark lattice. 
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Clearly, p(As) = 4 and 

(4.2) = z(A) = 1 ((S+1)log2)(s) 

The authors have introduced this benchmark simply because it is convenient in 
the context of discussing our lists of lattice rules. No intrinsic mathematical 
property is implied or conjectured. 

The highlight lists include: 
1. all s-dimensional lattices A known to us having z(A) > -5, and 
2. all s-dimensional lattices A known to us satisfying both 

* z(A) > 2-5s and 
* z(A) > z(A) for all A known to us whose order, N, exceeds N, the 

order of A. 
Tables 1-8, Al, and A2 contain lists of lattices. Each line corresponds to a 

single lattice A. The s(s + 1)/2 entries which follow N and p are elements 
of an upper triangular matrix B. This is the upper triangular lattice form or 
Hermite normal form of any generator matrix of A (see the remarks at the end 
of ?1). Then comes the rank of the corresponding lattice rule. In this column 
an entry 0 indicates rank 1 simple (see [3]), and an entry 1 indicates rank 1 
not simple. An s-dimensional copy rule can be recognized as one having rank 
s. (See [8] for full discussions of rank and of copy rules.) 

In Tables 1 and 2, we identify the list from which this lattice was taken. 
These lists are specified in ?5; the abbreviations are B = Blue, G = Green, 
SG = Scaled Green, and SB = Scaled Blue. 

The authors must emphasize that these are lists of lattices that happen to be 
known to us at this time. In ?6 we shall discuss the question of how many other 
lattices there may be that belong on such a list but have not been encountered 
yet. Only for N < N (= 4000 for s = 3 and 600 for s = 4) are these lists 
complete. 

It is of interest to note the extremely disparate values of N involved. From 
complete lists of optimal lattices of order up to N, we obtain excellent lattices 
of order up to say 5N, a few of these being better than any found previously. 
After this, the list degrades in quality only slowly, containing lattices of good 
(but not top) quality up to order 50N. 

The tail of the list is unlikely to include any optimal lattices at all. However, 
for these extraordinarily high orders, an example of a lattice of moderate quality 
is of some interest. 

Undoubtedly, the most outstanding lattices on these lists are 
(i) a three-dimensional lattice having N = 9760, p = 864, and z = 

0.81319, and 
(ii) a four-dimensional lattice having N = 8992, p = 212, and z = 

1.95413. 
The results of scaling the short list [1] of five-dimensional rank-l simple 

lattices were relatively unexciting. Possible reasons for this are mentioned in 
?5. We found no lattices whose z-values exceeded z5, and only 25 whose z- 
values exceeded 2;Z5. We have listed in Table 8 all the lattices known to us 
whose z-values exceed 2Z5. 
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TABLE 1. A highlight list of three-dimensional lattices 
N p bl, b12 b13 b22 b23 b33 rank z source 
16 4 2 0 2 2 2 4 3 0.69315 G 

1672 160 2 0 90 2 130 418 3 0.71022 G 
2352 216 2 0 111 2 171 588 2 0.71293 G 
3069 270 1 1 464 3 168 1023 2 0.70637 G 
4704 390 2 0 228 3 148 784 2 0.70109 SG,SB 
4880 432 1 0 638 2 1002 2440 2 0.75183 SG,SB 
4900 400 1 0 452 2 748 2450 2 0.69363 SG 
8922 700 1 0 823 2 1362 4461 1 0.71367 SB 
9760 864 2 0 638 2 1002 2440 3 0.81319 SG,SB 
9800 800 2 0 452 2 748 2450 3 0.75022 SG 

17844 1356 1 0 2656 2 4062 8922 2 0.74392 SB 
19416 1404 1 0 1431 2 3540 9708 2 0.71399 SG 
20008 1440 2 0 1314 2 2048 5002 3 0.71279 SG 
45576 2968 2 0 1658 2 4192 11394 3 0.69857 SB 
48264 2864 2 0 1820 3 1184 8044 2 0.63995 SG 
67410 3822 2 0 2469 3 1548 11235 2 0.63040 SG 
67527 3762 3 0 1971 3 3072 7503 3 0.61952 SG 
68238 3678 2 0 3441 3 5328 11373 2 0.59994 SG 
90984 4680 2 0 5368 3 3680 15164 2 0.58734 SG 

109050 5310 2 0 7940 3 3080 18175 1 0.56482 SG 
130860 5808 2 0 9528 3 3696 21810 2 0.52292 SG 
153819 6678 3 0 2487 3 6288 17091 3 0.51852 SB 
160064 6688 4 0 2628 4 4096 10004 3 0.50070 SG 
179760 7424 3 0 3292 4 2064 14980 2 0.49970 SG 
227460 8880 3 0 6710 4 4600 18955 1 0.48155 SG 

TABLE 2. A highlight list of four-dimensional lattices 
N P b11 b12 b13 b14 b22 b23 b24 b33 b34 b44 rank z source 

32 4 2 0 0 2 2 0 2 2 2 4 4 1.50142 G 
928 32 2 0 0 34 2 0 44 2 52 116 4 1.61001 SG 
992 32 2 0 0 20 2 0 46 2 54 124 4 1.53568 SG 

1008 32 2 0 0 16 2 2 8 6 12 42 4 1.51832 SG 
1008 32 2 0 0 16 2 2 8 6 30 42 4 1.51832 SG 
1354 40 1 0 0 492 1 0 550 1 658 1354 0 1.53607 B 
1748 48 1 0 0 286 1 0 360 1 472 1748 0 1.53074 B 
2097 54 1 0 0 435 1 0 936 1 1035 2097 0 1.50633 B 
2112 55 1 0 0 100 1 0 162 1 830 2112 0 1.52617 B 
2215 60 1 0 0 257 1 0 448 1 558 2215 0 1.60730 B 
2248 60 1 0 0 106 1 0 178 2 442 1124 2 1.58980 SG 
2320 64 2 0 0 34 2 0 56 2 82 290 4 1.65661 SG 
2477 63 1 0 0 128 1 0 701 1 915 2477 0 1.55328 B 
2570 65 1 0 0 787 1 0 1138 1 1246 2570 0 1.55921 B 
2686 66 1 0 0 852 1 0 1142 1 1218 2686 0 1.53190 B 
2730 68 1 0 0 170 1 0 452 1 1328 2730 0 1.55928 B 
2836 72 1 0 0 418 1 0 1010 1 1290 2836 0 1.60464 B 
3298 84 1 0 0 535 1 0 701 1 937 3298 0 1.67153 B 
4496 106 1 0 0 106 2 0 178 2 442 1124 3 1.66790 SG,SB 
8992 212 2 0 0 106 2 0 178 2 442 1124 4 1.95413 SG,SB 
9908 180 1 0 0 256 1 0 1402 2 1830 4954 2 1.53803 SB 

20232 318 2 0 0 159 2 0 267 3 663 1686 2 1.54517 SG,SB 
52768 672 2 0 0 1070 2 0 1402 2 1874 6596 4 1.50574 SB 

267138 2268 3 0 0 1605 3 0 2103 3 2811 9894 4 1.32561 SB 
474912 3024 3 0 0 2140 3 0 3748 4 2804 13192 2 1.08787 SB 

5. LISTS OF SCALED LATTICES 

In the preceding section we presented two short lists that included the best 
lattices we have found so far. These were extracted from results that we outline 
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in detail in this section. This is in order that subsequent workers can relate their 
investigation to ours for purposes that may include confirming or extending our 
work. 

All our work involves taking a list of lattices and treating each member of the 
list in the way described in ?3. We now describe the seven different lists that 
were used as input. The three blue lists (containing only rank-I simple lattices) 
have been available in the literature for several years. The two red lists have 
appeared in the literature only very recently. The two green lists have not been 
published. Each list is in a format corresponding to that used in Table 1. 

1. Three dimensions: 
* Green list. N E [16, 4000]; contains 6557 entries. These are all the 

lattices in this range for which p(A) = p3(N). This list is unpublished. 
* Red list. N E [ 16, 3916]; contains 68 entries. This is a subset of the 

green list above, containing entries for N if and only if p3(N) > p3(M) 
for all M < N. This list is published in [3]. 

* Blue list. N E [21, 6066]; contains 101 entries. This is a concate- 
nation of lists published by Maisonneuve [5] and Kedem and Zaremba 
[2]. It contains only rank- 1 simple lattices, assembled from this subclass, 
using the standard red list convention described above. 

2. Four dimensions: 
* Green list. As above; N E [20, 6001; contains 16127 entries, but is not 

complete. It contains most lattices for which p(A) = p4(N). If there 
exist more than ten lattices A for a single value of N, some may be 
missing, but at least ten are included. This list is unpublished. 

* Red list. As above; N E [32, 562]; contains 23 entries. This list is 
published in [4]. 

* Blue list. As above; N E [52, 3298]; contains 47 entries. This is a 
concatenation of lists published by Maisonneuve [5] and Bourdeau and 
Pitre [1]. 

3. Five dimensions: 
* Blue list. N E [112, 772]; contains nine entries. This list is published 

in [1]. Seven of these are repeated in the first part of Table 8. 
Each of these seven lists were processed in the same way. This process pro- 

duced three more lists from each input list. These are specified below in the 
case that the input list is the three-dimensional green list. 

1. We form first a three-dimensional raw scaled green list. For this, we 
require z, a cutoff value specified in (5.1) below. This list contains each lattice 
with z(A) > T obtained by scaling every member of the green list. This huge 
list includes duplicate entries, and for some values of N, entries with different 
p-values. 

2. From this, by cutting out all duplicate entries and any entries for which 
there is another lattice of the same order with a higher value of p, we produce 
a green scaled green list. We have retained this list in our files. 

3. Next we use the standard procedure to produce a red scaled green list. 
This, as usual, retains only lattices on the green scaled green list for which 
p(A) > p(A) for all A on that list having N < N. This list is given in 
Table 5. 
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TABLE 3. Length and scope of lists involved 

Kid of list Input lists . Green scaled lists Red scaled lists 
Dim. Type Length Nmin N.., Length Nmi, Nmz 1Length Table 

Blue 101 21 6066 177 4044 153819 29 4 
3-d Green 6557 16 4000 4910 4002 227460 80 5 

Red 68 16 3916 42 4032 31328 17 Al 
Blue 46 52 3298 162 624 474912 47 6 

4-d Green 16127 20 600 4750 602 365625 55 7 
Red 23 32 562 . 51 640 80928 | 25 1 A2 

5-d Blue - 7 112 772 1 117 112 15768 I 17 _ 

TABLE 4. Red scaled blue list in three dimensions 

N P bil b12 b13 b22 823 8JJ rank z 
4108 270 1 0 556 1 1408 4108 0 0.546880 
4142 312 1 0 966 1 1422 4142 0 0.627380 
4358 336 1 0 1398 1 1998 4358 0 0.646080 
4704 390 2 0 228 3 148 784 2 0.701090 
4880 432 1 0 638 2 1002 2440 2 0.751830 
5862 450 1 0 538 1 1902 5862 0 0.666040 
6066 460 1 0 600 1 1581 6066 0 0.660540 
7430 544 1 0 1039 2 1425 3715 1 0.652600 
7664 552 1 0 1194 2 1600 3832 2 0.644210 
7698 576 1 0 603 2 1701 3849 1 0.669580 
7734 588 1 0 600 1 2019 7734 0 0.680710 
8922 700 1 0 823 2 1362 4461 1 0.713670 
9760 864 2 0 638 2 1002 2440 3 0.813190 

14112 908 2 0 454 2 746 3528 3 0.614780 
15328 958 2 0 728 2 1778 3832 3 0.602340 
15396 1032 2 0 603 2 1701 3849 2 0.646300 
17436 1040 1 0 2094 2 1299 8718 1 0.582530 

1 0 1299 2 2094 8718 2 0.S82S30 
17844 1356 1 0 2656 2 4062 8922 2 0.743920 
22788 1484 1 0 1658 2 4192 11394 2 0.6S3430 
26766 1646 1 0 2656 3 4062 8922 2 0.626940 
31008 1680 2 0 2190 2 3664 7752 3 0.560330 
32940 2016 3 0 957 3 1503 3660 3 0.636650 
34872 2080 2 0 1299 2 2094 8718 2 0.623870 
45576 2968 2 0 1658 2 4192 11394 3 0.698570 
69282 3042 3 0 1206 3 3402 7698 3 0.489390 
69744 3120 2 0 1732 3 2792 11624 2 0.498910 
78080 3584 4 0 1276 4 2004 4880 3 0.517100 

102546 4452 2 0 2487 3 6288 17091 2 0.500920 
153819 6678 3 0 2487 3 6288 17091 3 0.518520 

The cutoff values we used were 

(5.1) Z= Vfz3 0.46, Z= Z Z= glf ^ 2.50 

in 3, 4, and 5 dimensions, respectively. Table 3 gives some information on 
the length and the scope of the lists in this section. 

We note that, when the input is a green or a red list of lattices with N E 
[Nmin, N], there is no need to retain scaled lattices having N < N because 
these lattices, or better ones having the same N', are available by definition on 
the input list. This is not the case when the input is a blue list. The input blue 
list comprises excellent lattices, all of which are rank-1 simple. One may well 
find an interesting lattice of higher rank having N' > N but N' < N. Tables 4 
and 6 (in which N = 6066 and 3298, respectively) contain a handful of such 
lattices. These are generally of technical interest only. By including them we 
specify precisely the effect of scaling a blue list. 
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TABLE 5. Red scaled green list in three dimensions 

N p bli b12 b13 b22 b23 bi rank z 
4002 280 1 0 958 1 1258 4002 0 0.580330 
4008 288 2 0 219 2 294 1002 2 0.596120 
4044 308 1 0 400 1 1054 4044 0 0.632530 
4050 312 1 3 178 9 410 450 1 0.639910 
4185 324 3 0 108 3 168 465 3 0.645620 
4358 336 1 0 1398 1 1998 4358 0 0.646080 
4528 344 2 0 218 2 316 1132 3 0.639530 
4580 348 1 0 348 1 2002 4580 0 0.640490 
4588 360 1 0 808 2 588 2294 2 0.661560 
4704 390 2 0 228 3 148 784 2 0.701090 
4880 432 1 0 638 2 1002 2440 2 0.751830 
5862 450 1 0 538 1 1902 5862 0 0.666040 
6066 460 1 0 600 1 1581 6066 0 0.660540 
6198 468 1 0 1203 2 1470 3099 1 0.659340 

1 0 864 2 234 3099 1 0.659340 
6322 480 1 0 800 1 2998 6322 0 0.664480 
6682 504 1 0 1808 1 2624 6682 0 0.664290 
6976 506 1 0 1644 1 3034 6976 0 0.641950 
7116 510 1 0 1606 1 2120 7116 0 0.635720 
7184 560 1 2 586 4 1544 1796 2 0.692170 
7544 572 2 0 336 2 582 1886 3 0.676980 
7698 576 1 0 603 2 1701 3849 1 0.669580 
7734 588 1 0 600 1 2019 7734 0 0.680710 
8391 598 1 0 1635 1 3849 8391 0 0.643890 
8628 630 1 0 792 1 3363 8628 0 0.661750 
8836 660 1 0 942 2 2126 4418 2 0.678720 
9297 702 1 0 864 3 234 3099 2 0.689950 
9760 864 2 0 638 2 1002 2440 3 0.813190 

12944 936 1 0 954 2 2360 6472 2 0.684670 
13524 940 1 0 2488 2 984 6762 2 0.661160 
14068 948 1 0 1880 2 800 7034 2 0.643660 
14 260 980 1 0 996 2 2440 7130 2 0.657360 
14820 1032 1 0 1702 2 2650 7410 2 0.668760 
15420 1080 1 0 2002 2 3050 7710 2 0.675410 
16914 1120 1 0 2973 2 1755 8457 1 0.644690 
16926 1152 1 0 1712 3 644 5642 1 0.662680 
18372 1160 2 0 1713 2 2049 4593 2 0.619940 
18882 1224 2 0 669 3 1449 3147 2 0.638250 
19194 1260 1 0 1839 2 1161 9597 1 0.647420 
19416 1404 1 0 1431 2 3540 9708 2 0.713990 
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TABLE 5 (continued) 

N p bil b12 b13 b22 b23 b3 rank' z 
20008 1440 2 0 1314 2 2048 5002 3 0.712790 
21810 1470 1 0 4764 2 1848 10905 1 0.673340 
22980 1512 1 0 4266 2 771 11490 1 0.660750 
24132 1584 2 0 888 2 1365 6033 2 0.662380 
25888 1618 1 0 1908 2 4720 12944 2 0.635100 
27048 1764 2 0 984 2 2488 6762 3 0.665570 
29080 1936 1 0 6352 2 2464 14540 2 0.684240 
32176 1992 2 0 1184 2 1820 8044 3 0.642560 
32940 2016 3 0 957 3 1503 3660 3 0.636650 
33075 2034 3 0 678 3 1122 3675 3 0.639970 
34758 2052 2 0 1101 3 2688 5793 2 0.617300 
35868 2136 2 0 1167 2 4131 p\8967 2 0.624550 
36198 2148 2 0 1365 3 888 6033 2 0.622880 
38388 2232 2 0 1161 2 1839 9597 2 0.613730 
39348 2418 2 0 2220 2 2931 9837 2 0.650170 
42064 2448 2 0 2164 2 4876 10516 3 0.619620 
44940 2548 2 0 1548 2 2469 11235 2 0.607410 

2 0 2112 2 3249 11235 2 0.607410 
45492 2664 2 0 2760 2 4026 11373 2 0.628070 
48264 2864 2 0 1820 3 1184 8044 2 0.639950 
54525 2904 1 0 7940 3 3080 18175 1 0.580880 
57582 3006 2 0 1839 3 1161 9597 2 0.572200 
60656 3120 2 0 3680 2 5368 15164 3 0.566480 
60858 3180 2 0 3732 3 1476 10143 2 0.575630 
65430 3186 2 0 4044 3 1788 10905 2 0.539950 
67410 3822 2 0 2469 3 1548 11235 2 0.630400 
76776 4008 2 0 2452 3 1548 12796 2 0.587220 
87240 4248 2 0 6352 3 2464 14540 2 0.553950 
90495 4440 3 0 1480 3 2275 10055 2 0.559960 
90984 4680 2 0 5368 3 3680 15164 2 0.587340 

109050 5310 2 0 7940 3 3080 18175 1 0.564820 
120660 5370 3 0 2275 4 1480 10055 1 0.520740 
130860 5808 2 0 9528 3 3696 21810 2 0.522920 
144792 5976 3 0 2730 4 1776 12066 2 0.490450 
151640 6130 2 0 6710 4 4600 18955 2 0.482240 
160064 6688 4 0 2628 4 4096 10004 3 0.500700 
174480 7104 2 0 9528 4 3696 21810 3 0.491420 
179760 7424 3 0 3292 4 2064 14980 2 0.499700 
191940 7440 3 0 3065 4 1935 15995 1 0.471540 
227460 8880 3 0 6710 4 4600 18955 1 0.481550 
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TABLE 6. Red scaled blue list in four dimensions 
N P bil b12 b13 b14 622 623 624 b33 b34 b44 rank z 

624 16 2 0 0 12 2 0 21 2 27 78 3 1.06215 
2 0 0 9 2 0 is 2 36 78 3 1.06215 

708 18 1 0 0 27 2 0 60 2 78 177 2 1.09489 
718 22 1 0 0 158 1 0 210 1 234 718 0 1.32521 
732 24 1 0 0 248 1 0 294 1 324 732 0 1.42637 
932 26 1 0 0 116 1 0 288 1 314 932 0 1.30416 
1124 30 1 0 0 106 1 0 178 1 442 1124 0 1.31706 
1234 36 1 0 0 170 1 0 306 1 404 1234 0 1.47811 
1354 40 1 0 0 492 1 0 550 1 658 1354 0 1.53607 
1748 48 1 0 0 286 1 0 360 1 472 1748 0 1.53074 
1990 SO 1 0 0 256 1 0 S84 1 684 1990 0 1.44969 
2052 51 1 0 0 184 1 0 282 1 598 2052 0 1.44561 
2097 54 1 0 0 435 1 0 936 1 1035 2097 0 1.50633 
2112 55 1 0 0 100 1 0 162 1 830 2112 0 1.52617 
2248 60 1 0 0 106 1 0 178 2 442 1124 2 1.58980 
2686 66 1 0 0 852 1 0 1142 1 1218 2686 0 1.53190 
2730 68 1 0 0 170 1 0 452 1 1328 2730 0 1.55928 
2836 72 1 0 0 418 1 0 1010 1 1290 2836 0 1.60464 
4496 106 1 0 0 106 2 0 178 2 442 1124 3 1.66790 
5672 108 1 0 0 194 1 0 718 2 994 2836 2 1.42248 
6744 120 1 0 0 159 2 0 267 2 663 1686 2 1.38308 
8448 126 1 0 0 830 2 0 100 2 162 2112 3 1.21931 
8508 144 1 0 0 627 1 0 1935 2 1515 4254 1 1.38584 
8992 212 2 0 0 106 2 0 178 2 442 1124 4 1.95413 
16116 218 1 0 0 1278 2 0 1713 2 1827 4029 2 1.26949 
20232 318 2 0 0 159 2 0 267 3 663 1686 2 1.54517 
26384 336 1 0 0 614 2 0 1402 2 1874 6596 3 1.31989 

1 0 0 1070 2 0 1402 2 1874 6596 3 1.31989 
32232 432 2 0 0 1278 2 0 1713 2 1827 4029 3 1.44428 
42976 436 2 0 0 1704 2 0 2284 2 2436 5372 4 1.15467 
43821 468 3 0 0 156 3 0 228 3 495 1623 4 1.21996 
45522 477 3 0 0 159 3 0 267 3 663 1686 4 1.20550 
48348 480 2 0 0 1035 2 0 1281 3 882 4029 2 1.15504 

2 0 0 375 2 0 1257 3 585 4029 2 1.15504 
52768 672 2 0 0 614 2 0 1402 2 1874 6596 4 1.50574 
89046 756 1 0 0 1605 3 0 2103 3 2811 9894 3 1.10276 

1 0 0 79 3 0 2103 3 2811 9894 3 1.10276 
108783 972 3 0 0 327 3 0 558 3 1386 4029 4 1.20172 
118728 1008 2 0 0 79 2 0 2103 3 2811 9894 2 1.15914 

2 0 0 1605 2 0 2103 3 2811 9894 2 1.15914 
2 0 0 1605 2 0 2811 3 2103 9894 2 1.15914 

145044 1080 3 0 0 1176 3 0 1380 3 1708 5372 3 1.05174 
178092 1512 2 0 0 1605 3 0 2103 3 2811 9894 3 1.24098 

2 0 0 79 3 0 2103 3 2811 9894 3 1.24098 
257856 1728 3 0 0 744 4 0 436 4 1848 5372 3 1.04043 
267138 2268 3 0 0 79 3 0 2103 3 2811 9894 3 1.32561 
474912 3024 3 0 0 2140 3 0 3748 4 2804 13192 2 1.08787 

6. COMMENTS ABOUT LISTS 

6.1. Evaluation of scaled lists. An immediate question that comes to mind is 
to what extent any list obtained here compares with the corresponding complete 
list. The authors believe that, at best, one retains about 70% of a complete list, 
and that this percentage diminishes to zero as the order N significantly exceeds 
the order N of the input list. The rest of this subsection is devoted to this 
question. 

We carried out some numerical experiments in an environment in which the 
answer, in the form of a complete red list, is available. We applied our scaling 
technique to only part of our three-dimensional green list, the first part having 
N < N = 250. This produced first a long repetitive raw scaled green list and 
after massaging, as described in ?5, a green scaled green list containing 450 
lattices sharing 326 distinct values of N lying in [251, 13376]. Since we have 
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TABLE 7. Red scaled green list in four dimensions 
N P bl b12 b13 b14 b22 623 624 b33 b34 b44 rank z 

676 22 1 0 0 50 1 0 158 2 34 338 2 1.38186 
1 0 0 54 1 0 128 2 12 338 2 1.38186 

688 24 1 0 0 106 1 0 144 2 22 344 2 1.48920 
900 25 1 0 4 9 1 6 25 30 0 30 2 1.28535 
928 32 2 0 0 34 2 0 44 2 52 116 4 1.61001 
1281 34 1 0 0 54 1 0 129 3 98 427 1 1.35893 
1344 36 1 0 0 45 2 0 99 2 162 336 2 1.38989 
1556 40 1 0 0 84 1 0 218 2 244 778 2 1.38871 
1692 42 1 0 0 96 1 0 412 2 134 846 2 1.37169 
1952 48 2 0 0 24 2 0 42 2 56 244 4 1.41160 

2 0 0 24 2 0 40 2 92 244 4 1.41160 
2200 50 1 0 2 28 2 2 94 10 20 110 3 1.34617 
2248 60 1 0 0 106 1 0 178 2 442 1124 2 1.58980 
2320 64 2 0 0 34 2 0 56 2 82 290 4 1.65661 
3132 72 2 0 0 51 3 0 66 3 78 174 3 1.48950 
4080 80 2 0 0 40 2 0 62 2 154 510 4 1.35530 

2 0 0 40 2 0 62 2 134 510 4 1.35530 
4496 106 1 0 0 106 2 0 178 2 442 1124 3 1.66790 
6192 108 2 0 0 196 2 0 234 3 168 516 3 1.32960 
6736 120 2 0 0 62 2 0 206 2 294 842 4 1.38435 
7312 128 2 0 0 218 2 0 340 2 414 914 4 1.38576 
7888 144 2 0 0 172 2 0 314 2 382 986 4 1.46987 
8992 212 2 0 0 106 2 0 178 2 442 1124 4 1.95413 
14112 216 2 0 0 174 2 0 284 3 510 1176 3 1.39735 
18816 224 2 0 0 174 2 0 284 4 510 1176 4 1.15326 
19632 252 2 0 0 616 2 0 684 3 180 1636 3 1.25424 
20232 318 2 0 0 159 2 0 267 3 663 1686 2 1.54517 
26622 324 2 0 0 258 3 0 471 3 573 1479 3 1.26360 
31590 360 2 0 0 327 3 0 483 3 543 1755 3 1.22327 
37017 432 3 0 0 327 3 0 510 3 621 1371 4 1.29135 
39933 486 3 0 0 258 3 0 471 3 573 1479 4 1.36616 
47385 540 3 0 0 327 3 0 483 3 543 1755 4 1.32089 
65808 576 3 0 0 680 3 0 828 4 436 1828 2 1.07736 

3 0 0 436 3 0 680 4 828 1828 2 1.07736 
70992 648 3 0 0 344 3 0 628 4 764 1972 2 1.13893 

3 0 0 628 3 0 764 4 344 1972 2 1.13893 
81360 720 3 0 0 632 3 0 916 4 392 2260 2 1.13133 
87744 768 3 0 0 436 4 0 680 4 828 1828 3 1.13395 
94656 792 3 0 0 344 4 0 628 4 764 1972 3 1.09849 
108480 864 3 0 0 392 4 0 472 4 1056 2260 3 1.07067 

3 0 0 392 4 0 632 4 916 2260 3 1.07067 
112320 960 3 0 0 436 4 0 644 4 724 2340 3 1.1556 
116992 1024 4 0 0 436 4 0 680 4 828 1828 4 1.19200 
126208 1056 4 0 0 344 4 0 628 4 764 1972 4 1.15434 
144640 1152 4 0 0 392 4 0 472 4 1056 2260 4 1.12446 
149760 1280 4 0 0 436 4 0 644 4 724 2340 4 1.21376 
219375 1500 3 0 0 545 5 0 805 5 905 2925 3 1.03422 
228500 1600 4 0 0 545 5 0 850 5 1035 2285 3 1.06614 
285625 2000 5 0 0 545 5 0 850 5 1035 2285 4 1.10505 
365625 2500 5 0 0 545 5 0 805 5 905 2925 4 1.12191 

available a complete green list for N E [1, 4000], we were able to observe the 
quality of this particular green scaled green list. 

Table 9 gives a breakdown of the distribution of lattices in this list and their 
quality. Here, PL(N) is the lower bound on p3(N) based only on the lattices 
in this list. Examination of this table shows that for values of N near to N, 
we seem to be obtaining lattices for about half the values of N. Of these, 
80% are optimal, the rest being generally of reasonably high quality. On the 
other hand, for values of N exceeding 8N in a range containing 2000 values 
of N, we have found lattices for only 30 of these values, and only four of 
these are optimal. Fourteen of these 450 lattices may also be found on the 
three-dimensional red list which has 45 entries for N E [251, 4000]. 

A second numerical experiment concerns a scaled three-dimensional red list. 
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TABLE 8. Five-dimensional lattices having z(A) > 3.0. Rank- 
1 simple lattices in this list having N E [112, 772] have been 
taken from [1]. The others are scaled versions of these or of the 
benchmark lattice 

N p bil b12 b13 b14 b15 b22 b-23 b24 b25 b33 b34 b3s b44 b45 bs5 rank z 
64 4 2 0 0 0 2 2 0 0 2 2 0 2 2 2 4 5 4.495&3 
96 4 2 0 0 0 3 2 0 0 3 2 0 3 2 3 6 4 3.96210 

128 4 2 0 0 0 4 2 0 0 4 2 0 4 2 4 8 5 3.56961 
1 0 0 0 12 1 0 0 22 1 0 48 1 52 128 0 3.56961 

144 4 2 0 0 0 3 2 0 0 3 2 0 3 3 3 96 3 3.40971 
160 4 2 0 0 0 5 2 0 0 5 2 0 5 2 5 10 4 3.26808 
192 4 2 0 0 0 4 2 0 0 4 2 0 4 3 4 8 4 3.02758 

2 0 0 0 6 2 0 0 6 2 0 6 2 6 12 5 3.02758 
1 0 0 0 18 1 0 0 33 1 0 72 1 78 192 0 3.02758 

275 5 1 0 0 0 31 1 0 0 71 1 0 91 1 136 275 0 3.22179 
308 6 1 0 0 0 18 1 0 0 62 1 0 70 1 102 308 0 3.66511 
438 8 1 0 0 0 38 1 0 0 50 1 0 96 1 168 438 0 4.10962 
448 6 1 0 0 0 12 1 0 0 54 2 0 22 2 28 112 3 3.04710 

1 0 0 0 22 1 0 0 54 2 0 12 2 28 112 3 3.04710 
512 8 1 0 0 0 22 1 0 0 48 2 0 12 2 52 128 3 3.79336 
657 8 1 0 0 0 57 1 0 0 75 1 0 144 1 252 657 0 3.32502 
666 9 1 0 0 0 15 1 0 0 42 1 0 175 1 269 666 0 3.71336 

1 0 0 0 57 1 0 0 137 1 0 223 1 240 666 0 3.71336 
1 0 0 0 57 1 0 0 221 1 0 240 1 307 666 0 3.71336 

768 8 1 0 0 0 22 1 0 0 48 2 0 12 3 52 128 2 3.05476 
1 0 0 0 22 1 0 0 48 2 0 52 3 12 128 2 3.05476 
1 0 0 0 33 1 0 0 72 2 0 18 2 78 192 3 3.054T6 

772 10 1 0 0 0 154 1 0 0 170 1 0 230 1 256 772 0 3.80758 
924 9 1 0 0 0 93 1 0 0 105 1 0 153 2 27 462 0 3.10161 

1158 10 1 0 0 0 231 1 0 0 255 1 0 345 1 384 1158 0 3.03166 
1536 12 1 0 0 0 33 2 0 0 18 2 0 72 2 78 192 4 3.08556 
1544 12 1 0 0 0 78 1 0 0 264 1 0 378 2 10 772 2 3.07610 
2048 16 2 0 0 0 12 2 0 0 22 2 0 48 2 52 128 5 3.46294 

1 0 0 0 44 2 0 0 24 2 0 96 2 104 256 4 3.46294 
2560 16 1 0 0 0 55 2 0 0 30 2 0 120 2 130 320 4 3.02071 
2664 18 1 0 0 0 442 1 0 0 480 1 0 614 2 114 1332 2 3.31566 
3088 20 1 0 0 0 78 1 0 0 378 2 0 10 2 264 772 3 3.36013 
4632 24 1 0 0 0 117 1 0 0 567 2 0 15 2 396 1158 2 3.11591 
7008 32 2 0 0 0 16 2 0 0 70 2 0 144 2 186 438 5 3.17025 

TABLE 9. The three-dimensional green scaled green list with 
N = 250 

N-values for which 
Scaled Distinct PL(N)/p3(N) 

Interval Lattices N-values =1 E(1,0-9) < 0.9 
N E [251,500] 209 1112 94 15 3 
N E [501, 1000] 120 100 56 32 12 
N E [1001,2000] 75 69 19 27 23 
N E [2001,4000] 31 30 4 2 24 
N > 4000 . 15 15 ? ? ? 
Total 450 326 173 76 62 

We compare a plot of p3 (N) based on a scaled red list with a similar plot based 
on the complete red list. We consider five such plots. For the complete red list 
we define a piecewise constant function 

(6.1) P(N)=- max p(A). 
AE(3(M) 

M<N 

The discontinuities of p(N) occur at values of N appearing on the red list. At 
such values, P(N - 1) < P (N) . One can define the analogous function for a red 
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TABLE 10. Information about red scaled green lists 

% of N satisfying (N,, N2] (N2, N3] (N3, N4] (N4, N5] 
.,.._ofa . 5 

pi(N) = p(N) 51.6 62.4 46.6 0.0 
2(Nf). = A(N) 75.0 63.4 38.15 

/3(N) = A(N) 95.2 74.4 
A4(N) = A(N) 85.65 

scaled list based on an input green list for N E [1, N1], where Ni = 125 . 2i. 
We have constructed four functions pi (N), i = 1, 2, 3, 4. In general, 

pi(N) < A(N), but for some values of N this is an equality. We list in Table 
10 the percentage of values of N in an interval (Nj, Nj+lI, j = 1, 2, 3, 4, 
for which pi3(N) = p3(N). 

Naturally, when j < i, this is 100%, and when j >> i, this reduces to zero. 
Examination of the complete red lists in three and four dimensions which 

appeared in [3] and [4], respectively, shows that a proportion that varies un- 
steadily between 15% and 40% are root lattices, the majority of lattices on these 
lists being scaled lattices. If this state of affairs were to prevail for higher values 
of N. then any red scaled list would omit between 15% and 40% of the optimal 
lattices since it cannot by definition include root lattices. 

Finally, we state one further reason why we believe these lists to be incom- 
plete. This one is based on the actual lists, rather than on extrapolation. We 
have presented separately in Tables 5 and 4 a red scaled green list and the corre- 
sponding red scaled blue list. The first contains 80 entries and appears to be an 
excellent list in many ways, having as far as one can see the same characteristics 
as the actual red list for N < 4000. However, there are some known rules miss- 
ing. We know this because they appear on the clearly inferior and shorter red 
scaled blue list. These two lists contain six entries in common. There are eight 
entries on the red scaled blue list that merit inclusion on the red scaled green 
list, but are not there. If included, they would in total displace eight entries 
already there. 

One sees that a few missing entries do not alter the overall nature of the 
list very much. The missing entries are simply replaced by entries representing 
marginally inferior lattices; the effect on the list as a whole is local. Also, it is 
not particularly the entries with the highest z-values that seem to be missing. 

6.2. Suitable input for a scaled list. We have listed the three-dimensional red 
scaled red list (Table Al) and the red scaled green list (Table 5). Only two 
elements N = 4185 and N = 4704 occur on both. Thereafter, the red scaled 
red list deteriorates significantly when compared with the red scaled green list. 
However, the input red list contains all the really good elements of the input 
green list. The heuristic conclusion in this case is that, for scaling purposes, 
one does not want to start with optimal lattices having optimal N values. It 
appears that one will discover more if one inputs a list of good but not excellent 
lattices. 

All our results appear to support to some extent this conclusion. We have 
found the red scaled blue list to be intermediate. The blue list being restricted 
to rank-I simple lattices is not as good as the red list but seems to provide better 
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scaled lattices. Any conclusion based on our four-dimensional lists must take 
into account that the blue list includes much higher values of N than the green 
list. 

Theoretical support for this state of affairs can be found in ?3. There it is 
noted that, starting with a family root lattice, the effect of scaling is in general 
to improve the z-value at first, but then there is a steady decay in z-value. It 
is consistent with this situation that, for optimal values of N, the best lattices 
are not root lattices but are already scaled versions-but not very highly scaled. 
As mentioned above, the majority of the lattices on our red list are like this, 
and scaling them is unlikely to provide better ones. 

6.3. Comments on red lists. It has been traditional to report results of the 
type treated here using red lists (i.e., lists of optimal lattices). One reason is 
that it is feasible to publish such a list. A red list contains in one page an ex- 
cellent selection from a green list of fifty pages. Another reason is linked to 
the numerical quadrature application in which the cost is taken to be propor- 
tional to N, the number of function values, and the quality of the result to p. 
However, the present authors believe that, for the values of N now reached in 
three or four dimensions, the red list has become an anachronism. For many 
purposes a highlight list is adequate. For deeper investigation, the green list 
is probably needed. And, in applications, questions such as embedding of one 
rule in another and convenience in locating points using the relevant machine 
architecture may be much more significant than a small margin in the plot of 
N versus p. 

While the red list contains an excellent selection, occasionally good lattices 
are excluded because they are "in the shadow of" marginally better lattices. An 
example of this occurs in three dimensions with N = 9760 and N = 9800. The 
first has p = 864 and the second p = 800, so the second does not occur on a 
red list. In fact, we know only three lattices with z(A) > 0.75; these are the two 
mentioned above and one with N = 4880. Thus, our red list has omitted what 
might be considered the third best lattice available. In investigations relating to 
the distribution of good lattices, one may prefer to know about all good lattices, 
even if in applications some are not going to be used. 

6.4. The tail of the list. We mentioned towards the end of ?2 that it is trivial to 
find infinite sequences of lattices having monotonic increasing p(A') and N'. 
Thus, an incomplete red list can be extended indefinitely. The lists we have 
presented have the additional requirement that z(A) should exceed a specified 
amount T. The reader should note that this by itself need not render a list 
finite. In fact, numerical and theoretical evidence suggests the opposite. Our 
list deteriorates and so is finite simply because it can contain only a subset of 
lattices, namely, those which are scaled versions of root lattices having N < N. 
Inequalities (2.8) and (2.9) apply to the scaled versions of each of this finite 
collection of root lattices, and so to the concatenation from which our lists 
are formed. It is important to realize that this deterioration is a property of 
our selection process and has nothing to do with the asymptotic behavior of a 
complete red list of optimal lattices. 

7. CONCLUDING REMARKS 

The basic contribution of this paper is the introduction of a very simple 
theory of rectangular scaling of lattices and a description of the behavior of 
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p(A) under such scaling. This theory, described in ??2 and 3, remains to be 
fully exploited. In the rest of this paper we have used it only to provide lists of 
good lattices from existing lists. Applications of a more detailed and innovative 
nature may exist. 

The rest of this paper is concerned with carrying out this scaling process on 
lists of lattices. By any measure, this has been very successful, producing a 
cornucopia of new good lattices. Indeed, so many and varied are the outputs 
of this process that organization and selection of results for publication has 
become a problem in itself. This aspect of the work is described and discussed 
in ??5 and 6. 

We have uncovered many high-order lattice rules in dimensions 3, 4, and, to 
some extent, 5. The best are listed in Tables 1, 2, and 8, respectively. These 
turn out as might be expected in view of the current advanced theory (see, for 
example, Niederreiter [7]). It is our hope that these concrete examples will 
provide a spur to the recognition and practical application of lattice rules in 
actual scientific projects involving multidimensional quadrature. 

APPENDIX. RED SCALED RED LISTS 

The two lists in this appendix are included to illustrate the discussion in ?6.2. 
At first glance both lists appear reasonable. However, in fact, these lists as a 
whole are significantly inferior to those given in Tables 4 and 5, and 6 and 7, 
respectively, though they do contain some very good lattices. 

TABLE Al. Red scaled red list in three dimension 

N p bil b12 b13 b22 b23 b3 rank z 
4185 324 3 0 108 3 168 465 3 0.645620 
4704 390 2 0 228 3 148 784 2 0.701090 
5874 414 1 0 1044 2 303 2937 1 0.611650 
7056 444 3 0 148 3 228 784 2 0.557620 
7248 448 2 0 260 3 376 1208 2 0.549400 
7696 480 2 0 466 2 834 1924 3 0.558120 
8811 540 1 0 621 3 378 2937 2 0.556720 
8820 555 3 0 185 3 285 980 2 0.571660 
9408 588 3 0 228 4 148 784 2 0.571830 

11748 621 1 0 1392 3 404 3916 1 0.495370 
13212 648 2 0 1137 2 1428 3303 2 0.465390 
13376 672 4 0 180 4 260 836 3 0.477330 
15664 808 2 0 404 2 1392 3916 3 0.498250 
17622 909 2 0 621 3 378 2937 2 0.504320 
23352 1080 2 0 1304 2 2140 5838 3 0.465190 
23496 1212 2 0 1392 3 404 3916 2 0.519160 
31328 1440 2 0 828 4 504 3916 3 0.475840 
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TABLE A2. Red scaled red list in four dimensions 

N p b12 b13 b14 b2 b23 b24 bn A b44 rank z 
640 16 2 0 2 6 4 0 8 4 16 20 4 1.04376 
864 24 1 0 0 42 2 0 69 3 54 144 2 1.26997 

2 0 0 15 2 0 33 3 21 72 2 1.26997 
1 0 0 42 2 0 69 3 12 144 2 1.26997 

1124 30 1 0 0 106 1 0 178 1 442 1124 0 1.31706 
1944 36 3 0 0 15 3 3 12 6 30 36 4 1.06190 

3 0 0 15 3 0 21 3 33 72 4 1.06190 
2164 40 1 0 0 152 1 0 330 2 104 1082 2 1.09017 
2248 60 1 0 0 106 1 0 178 2 442 1124 2 1.58980 
4328 72 1 0 0 104 2 0 152 2 330 1082 3 1.16625 

1 0 0 104 2 0 242 2 400 1082 3 1.16625 
4496 106 1 0 0 106 2 0 178 2 442 1124 3 1.66790 
6744 120 1 0 0 159 2 0 267 2 663 1686 2 1.38308 
8656 144 2 0 0 104 2 0 152 2 330 1082 4 1.36734 
8992 212 2 0 0 106 2 0 178 2 442 1124 4 1.95413 
19476 216 2 0 0 156 2 0 228 3 495 1623 2 1.08193 

2 0 0 156 2 0 495 3 228 1623 2 1.08193 
20232 318 2 0 0 159 2 0 267 3 663 1686 2 1.54517 
35968 356 2 0 0 212 2 0 356 4 884 2248 4 1.08922 
38952 360 2 0 0 208 3 0 304 3 660 2164 2 1.03259 
40464 424 2 0 0 212 3 0 356 3 884 2248 2 1.17917 
43821 468 3 0 0 156 3 0 228 3 495 1623 4 1.21996 
45522 477 3 0 0 159 3 0 267 3 663 1686 4 1.20550 
77904 624 3 0 0 208 3 0 304 4 660 2164 2 1.01613 
80928 636 3 0 0 212 3 0 356 4 884 2248 2 1.00373 
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